Constructing Low Degree Hyperbolic Surfaces In

نویسنده

  • MIKHAIL ZAIDENBERG
چکیده

We describe a new method of constructing Kobayashi-hyperbolic surfaces in complex projective 3-space based on deforming surfaces with a " hyperbolic non-percolation " property. We use this method to show that general small deformations of certain singular abelian surfaces of degree 8 are hyperbolic. We also show that a union of 15 planes in general position in projective 3-space admits hyperbolic deformations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constructing Low Degree Hyperbolic Surfaces in P

We describe a new method of constructing Kobayashi-hyperbolic surfaces in complex projective 3-space based on deforming surfaces with a “hyperbolic non-percolation” property. We use this method to show that general small deformations of certain singular abelian surfaces of degree 8 are hyperbolic. We also show that a union of 15 planes in general position in projective 3-space admits hyperbolic...

متن کامل

Hyperbolic surfaces of $L_1$-2-type

In this paper, we show that an $L_1$-2-type surface in the three-dimensional hyperbolic space $H^3subset R^4_1$ either is an open piece of a standard Riemannian product $ H^1(-sqrt{1+r^2})times S^{1}(r)$, or it has non constant mean curvature, non constant Gaussian curvature, and non constant principal curvatures.

متن کامل

Two Classes of Hyperbolic Surfaces in P Bernard Shiffman and Mikhail Zaidenberg

We construct two classes of singular Kobayashi hyperbolic surfaces in P. The first consists of generic projections of the cartesian square V = C×C of a generic genus g ≥ 2 curve C smoothly embedded in P. These surfaces have C-hyperbolic normalizations; we give some lower bounds for their degrees and provide an example of degree 32. The second class of examples of hyperbolic surfaces in P is pro...

متن کامل

Scrolls and Hyperbolicity

Using degeneration to scrolls, we give an easy proof of non–existence of curves of low genera on general surfaces in P of degree d ≥ 5. We show, along the same lines, boundedness of families of curves of small enough genera on general surfaces in P. We also show that there exist Kobayashi hyperbolic surfaces in P of degree d = 7 (a result so far unknown), and give a new construction of such sur...

متن کامل

New Examples of Hyperbolic Octic Surfaces in P

We show that a general small deformation of the union of two general cones in P of degree ≥ 4 is Kobayashi hyperbolic. Hence we obtain new examples of hyperbolic surfaces in P of any given degree d ≥ 8. It was shown by Clemens [2] that a very general surface Xd of degree d ≥ 5 in P 3 has no rational curves; G. Xu [11] showed that Xd also has no elliptic curves (and in fact has no curves of genu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002